Website is intended for physicians
Search:
Всего найдено: 19

Abstract:

Introduction: prevalence of atrial fibrillation (AF) in the population continues to rise steadily due to the rapid aging of the population [1]. The search for the morphological substrate of AF has been going on for more than half a century. Left atrial remodeling has become such an important aspect in the pathogenesis of AF that some authors advocate the definition of atrial cardiomyopathies [3].

Aim: was to examine the impact of various imaging techniques on the detection of atrial fibrosis and their key role in the treatment of atrial fibrillation.

Conclusions: currently, radiological imaging techniques are available for clinical practice and provide additional possibilities in the assessment of left anterior segment function in AF. Morpho-functional changes in the left atrium can have a great impact on the global hemodynamic function of the left atrium, and as a consequence, these changes can be a significant predictor of the risk of AF progression and stroke development. Morpho-functional changes in the left atrium can have a great impact on the global hemodynamic function of the left atrium, and as a consequence, these changes can be a significant predictor of the risk of AF progression and stroke development.

 

Abstract:

Aim: was to evaluate the effectiveness of the complex use of MRI and high-resolution ultrasound for the diagnostics of fillers.

Material and methods: in presented case report, the study was carried out using a SOMATOM Aera SIMENS 1.5 Т tomograph in T1, T1 Dixon, T1 Fs, T2, T2 STIR modes, the slice thickness was 3 mm. Ultrasound was performed with a MyLab Alpha, Esaote device, linear sensors with a frequency of 6 - 18 MHz and 10 - 22 MHz were used in B-mode, Color Doppler Imaging mode.

Results: case report demonstrates possibilities of complex use of ultrasound and MRI in patients with atypical ultrasound pattern for hyaluronic acid-based fillers. When choosing treatment tactics, data obtained during the examination, indicating the presence of a filler in soft tissues of the chin that does not correspond to the ultrasound and MRI signs of hyaluronic acid, were taken into account.

Conclusions: complex diagnostics of dermal fillers using high-resolution ultrasound and MRI is indicated for patients with complications of contouring, for differential diagnostics of hyaluronic acid with fillers of non-hyaluronic nature.

 

 

Abstract:

Introduction: the main methods for diagnosing cardiac neoplasms, allowing to determine the localization, size, involvement of heart structures, to suggest the nature of the pathological process and to plan treatment tactics, are: echocardiography (EchoCG), contrast multispiral computed coronary angiography (MSCT CAG), magnetic resonance imaging (MRI) and positron emission computed tomography (PET CT). At the same time, any additional information about the pathological process can improve the quality of diagnosis and treatment. So, for example, selective coronary angiography (CAG), which in this case can be performed to clarify the coronary anatomy and exclude concomitant coronary atherosclerosis, in hands of attentive and experienced specialist of endovascular diagnostic and treatment methods can make a significant contribution to understanding the nature of blood supply of heart neoplasm, thereby bringing closer the formulation of the correct diagnosis and, ultimately, improving results of surgical treatment.

Aim: was to study the nature of blood supply of heart myxoma based on results of a detailed analysis of data of selective coronary angiography in patients with this pathology.

Material and methods: since 2005, 20 patients underwent surgery to remove heart myxoma. The average age of patients was 56,6 + 8,0 (43-74) years. According to data of ultrasound examination, sizes of myxomas ranged from 10 to 46 mm in width and from 15 to 71 mm in length (average size ? 25,6 ? 39,1 mm). In 2/3 of all cases (15 out of 20,75%), the fibrous part of the inter-atrial septum (fossa oval region) was the base of myxomas. In 8 of 20 (40%) cases, tumor prolapse into the left ventricle through structures of the mitral valve was noted in varying degrees. In order to exclude coronary pathology, CAG was performed in 14 cases, in the rest - MSCT CAG.

Results: of 14 patients with myxoma who underwent selective coronary angiography, 12 (85,7%) patients had distinct angiographic signs of vascularization. In all 12 cases, the sinus branch participated in the blood supply of myxoma, begins from the right coronary artery (RCA) in 10 cases: in 7 case it begins from proximal segment of the RCA and, in 3 cases, from the posterior-lateral branch (PLB) of the RCA. In one case, the source of blood supply of neoplasm was the sinus branch extending from PLB of dominant (left type) circumflex artery of the left coronary artery (PLB CxA LCA). In one case, the blood supply to the neoplasm involved branches both from the RCA and CxA, mainly from the left atrial branch of CxA. Moreover, in all 12 cases, sinus branch formed two branches: branch of sinus node itself and left atrial branch. It was the left atrial branch that was the source of blood supply of myxoma. Analysis of angiograms in patients with myxoma of LA showed that left atrial branch in terminal section formed a pathological vascularization in the LA projection, accumulating contrast-agent in the capillary phase (MBG 3-4). In addition to newly formed vascularization, lacunae of irregular shape were distinguished, the size of which varied from 2 to 8 mm along the long axis. In 8 cases, hypervascular areas with areas of lacunar accumulation of contrast-agent showed signs of paradoxical mobility and accelerated onset of venous phase. In two cases, there were distinct angiographic signs of arteriovenous shunt. In 2 cases (when the size of the myxoma did not exceed 15-20 mm according to EchoCG and CT), angiographic signs allowing to determine the presence of LA myxoma were not so convincing: there was no lacunar accumulation of contrast-agent; small (up to 10 mm) hypervascular areas were noticed, the capillary network of which stood out against the general background of uniform contrasting impregnation and corresponded to MBG grade 1-2.

Conclusion: according to our data, angiographic signs of vascularization of myxomas are detected in most cases with this pathology (85,7%). The source of blood supply, in the overwhelming majority of cases, is branch of coronary artery, which normally supplies the structure of the heart, on which the basement of the pathological neoplasm is located. The aforementioned angiographic signs characteristic of myxomas deserve the attention of specialists in the field of endovascular diagnosis and treatment and should be described in details in protocols of invasive coronary angiography.

 

References

1.     Петровский Б.В., Константинов Б.А., Нечаенко М.А. Первичные опухоли сердца. М.: Медицина, 1997; 152.

Petrovskiy BV, Konstantinov BA, Nechaenko MA. Primary heart tumors. M.: Medicina, 1997 [In Russ].

2.     Balci AY, Sargin M, Akansel S, et al. The importance of mass diameter in decision-making for preoperative coronary angiography in myxoma patients. Interact Cardiovasc Thorac Surg. 2019; 28(1): 52-57.

https://doi.org/10.1093/icvts/ivy217

3.     Omar HR. The value of coronary angiography in the work-up of atrial myxomas. Herz. 2015; 40(3): 442-446.

4.     Gupta PN, Sagar N, Ramachandran R, Rajeshekharan VR. How does knowledge of the blood supply to an intracardiac tumour help? BMJ Case Rep. 2019; 12(2): 225900.

https://doi.org/10.1136/bcr-2018-225900

5.     Marshall WHJr., Steiner RM, Wexler L. Tumor vascularity in left atrial myxoma demonstrated by selective coronary arteriography. Radiology. 1969; 93(4): 815-816.

6.     Lee SY, Lee SH, Jung SM, et al. Value of Coronary Angiography in the Cardiac Myxoma. Clin Anat. 2020; 33(6): 833-838.

https://doi.org/10.1002/ca.23527

 

Abstract:

Introduction: article provides a literature review on the role of various imaging methods used in the diagnosis and control of effectiveness of therapy for rheumatoid arthritis.

Aim: to analyze domestic and foreign literature sources reflecting the state of the problem and aspects of radiological diagnosis of rheumatoid arthritis.

Materials and methods: 52 scientific sources of leading domestic and foreign journals were analyzed.

Results: conventional radiography today is the most widely used imaging technique for diagnosing and monitoring of progression of rheumatoid arthritis. However, it is not sensitive enough to detect changes in the early stage of rheumatoid arthritis, since it only allows assessment of bone structures. Establishing the diagnosis of rheumatoid arthritis at the stage of detecting structural abnormalities in joints indicates the presence of functional impairment and disability of patients. At the same time, early diagnosis of rheumatoid arthritis, at the stage of pre-radiological changes, leads to an improved prognosis of the disease and contributes to preservation of working capacity. In this regard, it becomes necessary to introduce into clinical practice sensitive advanced imaging methods aimed at identifying changes that precede the development of structural changes in bone.

Conclusion: the diagnostic effectiveness of radiation research methods in rheumatoid arthritis implies the identification of synovitis, tenosynovitis, early inflammatory changes in the bone, structural changes in the articular cartilage and bone (erosion), assessment of the severity of the inflammatory response.

 

References

1.     Muravyev YuV. Extraarticular manifestations of rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya. 2018; 56(3): 356-362 [In Russ].

https://doi.org/10.14412/1995-4484-2018-356-362

2.     Nasonov EL, Olyunin YuA, Lila AM. Rheumatoid arthritis: the problems of remission and therapy resistance. Nauchno-prakticheskaya revmatologiya. 2018; 56(3): 263-271 [In Russ].

https://doi.org/10.14412/1995-4484-2018-263-271

3.     Turan A, ?eltik?i P, Tufan A, ?zt?rk MA. Basic radiological assessment of synovial diseases: a pictorial essay. Eur J Rheumatol. 2017; 4(2): 166-174.

https://doi.org/10.5152/eurjrheum.2015.0032

4.     Galushko EA, Nasonov EL. Prevalence of rheumatic diseases in Russia. Al'manah klinicheskoj mediciny. 2018; 46(1): 32-39 [In Russ].

https://doi.org/10.18786/2072-0505-2018-46-1-32-39

5.     Nasonov EL, Lila AM. The efficacy and safety of sarilumab, fully human monoclonal antibodies against interleukin 6 receptor, in rheumatoid arthritis: new evidence. Nauchno-prakticheskaya revmatologiya. 2019; 57(5): 564-577 [In Russ].

https://doi.org/10.14412/1995-4484-2019-564-57

6.     Lila AM, Dreval RО, Shipitsyn VV. Assessment of organization of medical care and drug provision for patients with rheumatic diseases, and the socioeconomic burden of these diseases in the Russian Federation. Sovremennaya revmatologiya. 2018; 12(3): 112-119 [In Russ]. https://doi.org/10.14412/1996-7012-2018-3-112-119

7.     Guo Q, Wang Y, Xu D, et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018; 6: 15.

https://doi.org/10.1038/s41413-018-0016-9

8.     Sharif K, Sharif A, Jumah F, et al. Rheumatoid arthritis in review: Clinical, anatomical, cellular and molecular points of view. Clin Anat. 2018; 31(2): 216-223.

https://doi.org/10.1002/ca.22980

9.     Sapundzhieva T, Karalilova R, Batalov A. Hand ultrasound patterns in rheumatoid and psoriatic arthritis: the role of ultrasound in the differential diagnosis. Rheumatol Int. 2020; 40(6): 837-848.

https://doi.org/10.1007/s00296-020-04559-8

10.   Bollow M. Rheumatoid arthritis of the hand: Part 2: Imaging. Radiologe. 2021; 61(4): 362-374.

https://doi.org/10.1007/s00117-021-00833-3

11.   Mikhaylova AS, Lesnyak OM. Pannus growth regulators as potential targets for biological therapy in rheumatoid arthritis. Sovremennaya revmatologiya. 2018; 12(1): 55-59 [In Russ].

https://doi.org/10.14412/1996-7012-2018-1-55-59

12.   Avdeeva AS, Artyukhov AS, Dashinimaeva EB, et al. Changes of cytokine profile measures during the treatment of rheumatoid arthritis with rituximab biosimilar (Acellbia, BIOCAD) and the original drug (MabThera, F. Hoffmann-La Roche Ltd., Switzerland). Nauchno-prakticheskaya revmatologiya. 2019; 57(1): 46-55 [In Russ].

https://doi.org/10.14412/1995-4484-2019-46-55

13.   Korolev MA, Ubshaeva YuB, Banshchikova NY, et al. The results of investigating the efficacy and safety of non-medical switching from the original rituximab to its biosimilar in rheumatoid arthritis patients (AMBIRA study). Nauchno-prakticheskaya revmatologiya. 2020; 58(6): 663-672 [In Russ].

https://doi.org/10.47360/1995-4484-2020-663-672

14.   Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988; 31(3): 315-24.

https://doi.org/10.1002/art.1780310302

15.   Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010; 69(9): 1580-8.

https://doi.org/10.1136/ard.2010.138461

16.   Emery P, Breedveld FC, Dougados M, et al. Early referral recommendation for newly diagnosed rheumatoid arthritis: evidence based development of a clinical guide. Ann Rheum Dis. 2002; 61(4): 290-297.

https://doi.org/10.1136/ard.61.4.290

17.   Sudo?-Szopi?ska I, Jurik AG, Eshed I, et al. Recommendations of the ESSR Arthritis Subcommittee for the Use of Magnetic Resonance Imaging in Musculoskeletal Rheumatic Diseases. Semin Musculoskelet Radiol. 2015; 19(4): 396-411.

https://doi.org/10.1055/s-0035-1564696

18.   Toyama S, Tokunaga D, Tsuchida S, et al. Comprehensive assessment of alterations in hand deformities over 11 years in patients with rheumatoid arthritis using cluster analysis and analysis of covariance. Arthritis Res Ther. 2021; 23(1): 66.

https://doi.org/10.1186/s13075-021-02448-4

19.   Shiraishi M, Fukuda T, Igarashi T, et al. Differentiating Rheumatoid and Psoriatic Arthritis of the Hand: Multimodality Imaging Characteristics. Radiographics. 2020; 40(5): 1339-1354.

https://doi.org/10.1148/rg.2020200029

20.   Kgoebane K, Ally MMTM, Duim-Beytell MC, Suleman F.E. The role of imaging in rheumatoid arthritis. South African Journal of Radiology. 2018; 22(1).

https://doi.org/10.4102/sajr.v22i1.1316

21. Drosos AA, Pelechas E, Voulgari PV. Conventional radiography of the hands and wrists in rheumatoid arthritis. What a rheumatologist should know and how to interpret the radiological fndings. Rheumatology International. 2019; 39: 1331-1341.

https://doi.org/10.1007/s00296-019-04326-4

22. Salaffi F, Carotti M, Beci G, et al. Radiographic scoring methods in rheumatoid arthritis and psoriatic arthritis. Radiol Med. 2019; 124(11): 1071-1086.

https://doi.org/10.1007/s11547-019-01001-3

23. Vyas S, Bhalla AS, Ranjan P, et al. Rheumatoid Arthritis Revisited – Advanced Imaging Review. Pol J Radiol. 2016; 81: 629-635.

https://doi.org/10.12659/PJR.899317

24.   Llopis E, Kroon HM, Acosta J, Bloem JL. Conventional Radiology in Rheumatoid Arthritis. Radiol Clin N Am. 2017; 55: 917-941.

http://doi.org/10.1016/j.rcl.2017.04.002

25.   Forslind K, Eberhardt K, Svensson B. Repair of Erosions in Patients with Rheumatoid Arthritis. The Journal of Rheumatology. 2019; 46 (7) 670-675. https://doi.org/10.3899/jrheum.180557

26.   Smirnov AV. Atlas of X-ray diagnostics of rheumatoid arthritis. M.: IMA-PRESS, 2009 [In Russ].

27.   Van der Heijde DM. How to read radiographs according to the Sharp/van der Heijde method. J Rheumatol. 1999; 26 (3): 743-5.

28.   Van der Heijde DM, Dankert T, Nieman F, et al. Reliability and sensitivity to change of a simplification of the Sharp/van der Heijde radiological assessment in rheumatoid arthritis. Rheumatology (Oxford). 1999; 38(10): 941-7.

https://doi.org/10.1093/rheumatology/38.10.941

29.   Mathew AJ, Danda D, Conaghan PG. MRI and ultrasound in rheumatoid arthritis. Curr Opin Rheumatol. 2016; 28(3): 323-9.

https://doi.org/10.1097/BOR.0000000000000282

30.   Wang MY, Wang XB, Sun XH, et al. Diagnostic value of high-frequency ultrasound and magnetic resonance imaging in early rheumatoid arthritis. Exp Ther Med. 2016; 12(5): 3035-3040.

https://doi.org/10.3892/etm.2016.3695

31. Waleed MH, Sherin MSh, Gehan AG. Role of magnetic resonance imaging and ultrasonography in diagnosis and followup rheumatoid arthritis in hand and wrist joints. The Egyptian Journal of Radiology and Nuclear Medicine. 2018; 49(4): 1043.

https://doi.org/10.1016/j.ejrnm.2018.05.013

32.   Sapundzhieva T, Karalilova R, Batalov A. Musculoskeletal ultrasound as a biomarker of remission - results from a one-year prospective study in patients with rheumatoid arthritis. Med Ultrason. 2018; 20(4): 453-460.

https://doi.org/10.11152/mu-1609

33.   Tan YK, Li H, Allen JC Jr, Thumboo J. Ultrasound power Doppler and gray scale joint inflammation: What they reveal in rheumatoid arthritis. Int J Rheum Dis. 2019; 22(9): 1719-1723.

https://doi.org/10.1111/1756-185X.13653

34.   Sun X, Deng X, Xie W, et al. The agreement between ultrasound-determined joint inflammation and clinical signs in patients with rheumatoid arthritis. Arthritis Res Ther. 2019; 21(1): 100.

https://doi.org/10.1186/s13075-019-1892-0

35.   Lee KA, Min SH, Kim TH, et al. Magnetic resonance imaging-assessed synovial and bone changes in hand and wrist joints of rheumatoid arthritis patients. Korean J Intern Med. 2019; 34(3): 651-659.

https://doi.org/10.3904/kjim.2016.271

36.   Seifeldein GS, Moussa DK, Galal MAA, et al. Grading of Ultrasonography in Rheumatoid Arthritis of Wrist and Hand Joints. Acad Radiol. 2020; 27(7): 937-943.

https://doi.org/10.1016/j.acra.2019.09.033

37.   Kaeley GS, Bakewell C, Deodhar A. The impor- tance of ultrasound in identifying and differentiating patients with early inflammatory arthritis: a narrative review. Arthritis Res Ther. 2020; 22: 1.

https://doi.org/10.1186/s13075-019-2050-4

38.   do Prado AD, Staub HL, Bisi MC, et al. Ultrasound and its clinical use in rheumatoid arthritis: where do we stand? Adv Rheumatol. 2018; 58(1): 19.

https://doi.org/10.1186/s42358-018-0023-y

39.   Filippucci E, Cipolletta E, Mashadi Mirza R, et al. Ultrasound imaging in rheumatoid arthritis. Radiol Med. 2019; 124(11): 1087-1100.

https://doi.org/10.1007/s11547-019-01002-2

40.   Henniger M, Rehart S. Tendinopathy in rheumatic diseases. Unfallchirurg. 2017; 120(3): 214-219.

https://doi.org/10.1007/s00113-016-0291-0

41.   Nishino A, Kawashiri SY, Shimizu T, et al. Assessment of both articular synovitis and tenosynovitis by ultra-sound is useful for evaluations of hand dysfunction in early rheumatoid arthritis patients. Mod Rheumatol. 2017; 27(4): 605-608.

https://doi.org/10.1080/14397595.2016.1253813

42.   Alekseeva OG. Joint ultrasonography in rheumatoid arthritis: pathogenetic rationale, possible use in diagnosis, therapy efficiency evaluation, and outcome prediction. Nauchno-prakticheskaya revmatologiya. 2018; 56(1): 82-92 [In Russ].

https://doi.org/10.14412/1995-4484-2018-82-92

43.   Szkudlarek M, Terslev L, Wakefield RJ, et al. Summary findings of a systematic literature review of the ultra-sound assessment of bone erosions in rheumatoid arthritis. J Rheumatol. 2016; 43(1): 12-21.

https://doi.org/10.3899/jrheum.141416

44.   Hassan R, Hussain S, Bacha R, et al. Reliability of Ultrasound for the Detection of Rheumatoid Arthritis. J Med Ultrasound. 2019; 27(1): 3-12.

https://doi.org/10.4103/JMU.JMU_112_18

45.   Xu H, Zhang Y, Zhang H, et al. Comparison of the clinical effectiveness of US grading scoring system vs MRI in the diagnosis of early rheumatoid arthritis (RA). J Orthop Surg Res. 2017; 12(1): 152.

https://doi.org/10.1186/s13018-017-0653-5

46.   El-Gohary RM, Mahmoud AAMA., Khalil A, et al. Validity of 7-Joint Versus Simplified 12-Joint Ultrasonography Scoring Systems in Assessment of Rheumatoid Arthritis Activity. J Clin Rheumatol. 2019; 25(6): 264-271.

https://doi.org/10.1097/RHU.0000000000000847

47.   Zou X, Zou J, Guo D, et al. Role of 7-Joint Ultrasonic Score in Predicting the Prognosis of Rheumatoid Arthritis. Iran J Radiol. 2020; 17(4): e102875.

https://doi.org/10.5812/iranjradiol.102875

48.   M?ller I, Loza E, Uson J, et al. Recommendations for the use of ultrasound and magnetic resonance in patients with rheumatoid arthritis. Reumatol Clin. 2018; 14(1): 9-19.

https://doi.org/10.1016/j.reuma.2016.08.010

49.   Rubin DA. MRI and ultrasound of the hands and wrists in rheumatoid arthritis. I. Imaging findings. Skeletal Radiol. 2019; 48(5): 677-695.

https://doi.org/10.1007/s00256-019-03179-z

50.   Cikutovic P, Contreras O, Burdiles ?, et al. Magnetic resonance of the hands for the diagnosis and follow-up of rheumatoid arthritis. Rev Med Chil. 2020; 148(9): 1315-1327.

https://doi.org/10.4067/S0034-98872020000901315

51.   ?stergaard M, Peterfy C, Conaghan P, et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol. 2003; 30(6): 1385-6.

52.   Smirnov A.V. Golimumab therapy-induced indicators of X-ray inflammation progression and magnitude according to magnetic resonance imaging evidence in patients with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis. Sovremennaya revmatologiya. 2013; 7(2): 75-82 [In Russ].

https://doi.org/10.14412/1996-7012-2013-2387

 

Abstract:

Introduction: the diagnosis of osteomyelitis in children and adolescents in early stages is the key to successful treatment of this formidable disease. Timely treatment will avoid a deterioration in the quality of life of patients, which is extremely important for adolescent patients. In recent decades, there has been an increase in the percentage of patients with osteomyelitis in childhood and adolescence.

Non-specific clinical manifestations of the disease and the absence of manifestations on radiographs for a long time lead to an incorrect interpretation of clinical and radiological data.

Aim: was to demonstrate possibilities of magnetic resonance imaging (MRI) and ultrasound (ultrasound) in diagnosis of osteomyelitis in case of adverse anatomical localization.

Material and methods: we present a case report of complex radiation diagnosis of inflammatory lesions of the musculoskeletal system of adverse anatomical localization in a teenager. Clinically patient suffered from severe pain in left hip joint with pain radiation to the left thigh, limitation of movements in the joint concerned, swelling of soft tissues of the left thigh and gluteal region against the background of hyperthermia.

Results: according to data of digital radiography, the patient did not reveal signs of the destructive process of bone tissue. Changes in the form of psoit and coxitis were detected by ultrasound. Examination was supplemented by MRI, according to which on T2 FatSat in coronal and axial projections the left-sided synovitis was confirmed, without inflammatory changes in the bone tissue. 10 days after, MRI revealed inflammatory changes in the bone marrow of the head of left femur, left pubic and iliac bones, adjacent soft tissues and left-sided synovitis, regarded as a manifestation of acute hematogenous osteomyelitis. Patient underwent surgical and symptomatic treatment with a positive result.

Conclusions:

1. Absence of pathological changes according to x-ray examinations in children and adolescents (radiography and MSCT) does not exclude the presence of osteomyelitis, due to the absence of manifestations on radiographs for a long time.

2. At early stages of disease, especially in young children, as well as at stages of conservative and surgical treatment, the most appropriate use of ultrasound and MRI.

3. Conducting MSCT is advisable after obtaining ultrasound and MRI data on the presence of bonedestructive changes.

  

References

1.     Bruchanov AV, Vasiliev AYu. Magnetic resonance imaging in osteology. Publishing house «Medicine», 2006; 200. [In Russ].

2.     Trufanov GE, Fokin VA. Features of the application of radiation diagnostic methods in pediatric practice. Vestnik sovremennoj klinicheskoj mediciny.2013; 6(6): 48–52 [In Russ].

3.     Peltola H, Paakkonen M. Acute Osteomyelitis in Children. N Engl J Med 2014; 370: 352-360.

4.     Basu S, Chryssikos T, Moghadem-Kia S, Zhuang H, Torigian DA, Alavi A. Positron emisson tomography as a diagnostic tool in infection: present role and future possibilities. Semin. Nucl. Med. 2009; 39 (1): 36-51

5.     Vasiliev AYu, Olkhova EB. Fundamentals of ultrasound diagnostics in pediatrics and pediatric surgery. M. 2019: 171-190 [In Russ].

 

ABSTRACT:

Article presents a literature review on the role of magnetic resonance imaging (MRI) of sacroiliac joints in the diagnosis of ankylosing spondylitis.

Aim: was to analyze domestic and foreign literature sources that reflect the state of the problem and aspects of radiodiagnostics of sacroiliac joints in patients with ankylosing spondylitis.

Materials and methods: article contains analysis of 29 literature sources of leading domestic and foreign scientific journals.

Results: for a reliable diagnosis of ankylosing spondylitis, the presence of x-ray confirmed sacroiliitis is a prerequisite. However, difficulties in confirming or absence of sings of sacroiliitis on radiography at the beginning of the disease leads to a delay in the diagnosis of ankylosing spondylitis, which is established for 5-10 years after first clinical signs of the disease. Magnetic resonance imaging allows us to evaluate changes in sacroiliac joints in early stages of the disease and prevent the development of significant structural changes that lead to early disability of patients. MR-symptoms of active inflammation of sacroiliac joints in ankylosing spondylitis include: edema of the bone marrow (ostitis) in subchondral parts of iliac bones and sacrum, edema of the capsule (capsulitis) and periarticular ligaments (enteritis) joint, as well as synovitis, accompanied by synovial effusion into the joint cavity. MR-symptoms of structural changes in sacroiliac joints in ankylosing spondylitis include: bone erosion, sclerosis, fat deposits of the bone marrow, bone bridges, ankyloses.

Conclusion: magnetic resonance imaging currently occupies a leading position in the early diagnosis of ankylosing spondylitis, which allows us to identify active inflammatory and structural changes in sacroiliac joints.

  

References

1.     Jerdes ShF, Rebrov AP, Dubinina TV et al. Spondylarthritis: modern terminology and definitions. Terapevticheskij arhiv. 2019; 5: 84–88 [In Russ].

2.     Russian clinical guidelines. Rheumatology. (Ed. E.L. Nasonov.) Moscow: GEOTAR-Media, 2019; 464 [In Russ].

3.     Cherencova IA, Otteva EN, Ostrovskij AB. A new look at ankylosing spondylitis. Zdravoohranenie Dal'nego Vostoka. 2016; 2: 93–101 [In Russ].

4.     Van der Linden S, Valkenburg H, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis: a proposal for modification of the New York criteria. Arthritis Rheum. 1984; 27: 361–368.

5.     Kellgren JH, Jeffrey MR. Spondylitis ankylopoetica: een Famile en Bevolkingsonderzoek en toetsing van diagnostische Criteria (thesis). Leiden University (The Netherlands). 1982; 16–70.

6.     Bennett P, Burch T. Population studies of the rheumatic diseases. Amsterdam: The Netherland. Excerpta Medica Foundation. 1968; 456–7.

7.     Smirnov AV, Erdes ShF. Optimization of radiodiagnostics of ankylosing spondylitis in clinical practice – the importance of a survey radiography of the pelvis. Nauchno-prakticheskaya revmatologiya. 2015; 53(2): 175–181 [In Russ].

8.     Rudwaleit M, Khan MA, Sieper J. The challenge of diagnosis and classification in early ankylosing spondylitis: do we need new criteria? Arthritis Rheum. 2005; 52 (4): 1000–1008.

9.     Rudwaleit M, van der Heijde D, Khan MA et al. How to diagnose axial spondyloarthritis early. Ann Rheum Dis. 2004; 63: 535–43.

10.   Mau W, Zeidler H, Mau R et al. Outcome of possible ankylosing spondylitis in a 10 years' follow-up study. Clin Rheumatol. 1987; 6 (Suppl. 2): 60–6.

11.   Bashkova IB, Madyanov IV. Ankylosing spondylitis: diagnostic aspects and the importance of non-steroidal anti-inflammatory drugs in its treatment (to help a general practitioner). Russkij medicinskij zhurnal. 2016; 24 (2): 101–108 [In Russ].

12.   Rudwaleit M, Landewe R, van der Heijde D et al. SpondyloArthritis international Society (ASAS) classification criteria for axial spondyloarthritis (Part I): Classification of paper patients by expert opinion including uncertainty appraisal. Ann Rheum Dis. 2009; 68: 770–776.

13.   Rudwaleit M, Jurik AG, Hermann KG et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS / OMERACT MRI group. Ann. Rheum. Dis. 2009; 10: 1520–1527.

14.   Levshakova AV. Differential diagnosis of sacroiliitis. Radiologiya – praktika. 2012; 2: 39–44 [In Russ].

15.   Erdes ShF, Bochkova AG, Dubinina TV et al. Early diagnosis of ankylosing spondylitis. Nauchno-prakticheskaya revmatologiya. 2013; 51 (4): 365–367 [In Russ].

16.   Rumyanceva DG, Dubinina TV, Demina AB et al. Ankylosing spondylitis and radiologically non-confirmed axial spondylitis: two stages of the same disease? Terapevticheskij arhiv. 2017; 5: 33–37 [In Russ].

17.   Bochkova AG, Levshakova AV. Criteria for a reliable diagnosis of sacroiliitis according to magnetic resonance imaging (ASAS / OMERACT recommendations and own data). Sovremennaya revmatologiya. 2010; 1: 12–17 [In Russ].

18.   Sieper J, van der Heijde D, Landewe R et al. New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis International Society (ASAS). Ann. Rheum. Dis. 2009; 68: 784–788.

19.   Dubinina TV, Erdes Sh. Inflammatory pain in the lower back in the early diagnosis of spondyloartritis. Nauchno-prakticheskaya revmatologiya. 2014; 4: 55–73 [In Russ].

20.   Levshakova AV. Radiodiagnostics of sacroiliitis. Radiologiya – praktika. 2011; 3: 33–41 [In Russ].

21.   Sudo?-Szopi?ska I, Jurik AG, Eshed I et al. Recommendations of the ESSR Arthritis Subcommittee for the Use of Magnetic Resonance Imaging in Musculoskeletal Rheumatic Diseases. Semin Musculoskelet Radiol. 2015; 19 (4): 396–411.

22.   Oostveen J, Prevo R, den Boer J et al. Early detection of sacroiliitis on magnetic resonance imaging and subsequent development of sacroiliitis on plain radiography: a prospective, longitudinal study. J Rheumatol. 1999; 26: 1953–1958.

23.   Smirnov AV, Erdes ShF. Diagnosis of inflammatory changes in the axial skeleton in ankylosing spondylitis according to data of magnetic resonance imaging. Nauchno-prakticheskaya revmatologiya. 2016; 54 (1): 53–59[In Russ].

24.   Tyuhova EYu. Magnetic resonance imaging of the spine and sacroiliac joints in patients with spondyloartritis.Nauchno-prakticheskaya revmatologiya. 2012; 51 (2): 106–111 [In Russ].

25.   Levshakova AV, Bochkova AG, Bunchuk NV. Magnetic resonance imaging in the diagnosis of sacroiliitis in patients with ankylosing spondylitis. Medicinskaya vizualizaciya. 2008; 2: 97–103 [In Russ].

26.   Rudwaleit M, Jurik AG, Hermann KG et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann Rheum Dis. 2009; 68 (10):1520–1527.

27.   Rudwaleit M, Landewe R, van der Heijde D et al. SpondyloArthritis international Society (ASAS) classification criteria for axial spondyloarthritis (Part II): Validation and final selection. Ann Rheum Dis. 2009; 68: 777–83.

28.   Sieper J, Rudwaleit M, Baraliakos X. The Assessment of Spondyloarthritis International Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009; 68 (2): 1–44.

29.   Levshakova AV, Bunchuk NV, Bochkova AG. Structural changes in sacroiliac joints in patients with ankylosing spondylitis according to magnetic resonance imaging. Kubanskij nauchnyj medicinskij vestnik. 2010; 6 (120): 70–74 [In Russ].

 

Abstract:

Introduction: development of software and hardware capabilities of modern computing systems has enabled three-dimensional (3D) modeling and 3D printing technology (medical prototyping) to become available for a wide range of healthcare specialists. Commercial software used for this purpose remains unavailable to private physicians and small institutions due to the high cost. However, there are freeware applications and affordable 3D printers that can also be used to create medical prototypes.

Aim: was to describe stages of creating of physical 3D models based on medical imaging data and to highlight main features of specialized software and to make an overview of main types of 3D printing used in medicine.

Material and methods: article describes process of creation of medical prototype, that can be divided on three main stages: 1) acquisition of medical imaging, obtained by ‘volumetric’ scanning methods (computed tomography (CT), magnetic-resonance imaging (MRI), 3D ultrasound (3D US)); 2) virtual 3D model making (on the basis of visualisation data) by segmentation, polygonal mesh extraction and correction; 3) 3D printing of virtual model by the chosen method of additive manufacturing, with or without post-processing.

Conclusion: medical prototypes with sufficient precision and physical properties are necessary for understanding of anatomical structure and surgical crew training and can be made with use of freely available software and inexpensive 3D printers.

 

References

1.     Luo H, Meyer-Szary О, Wang Z, Sabiniewicz R, Liu Y. Three-dimensional printing in cardiology: current applications and future challenges. Cardiol. J. 2017; 24 (4): 436–444.

2.     Vukicevic M, Mosadegh B, Min J K, Little S H. Cardiac 3D printing and its future directions. JACC Cardiovasc. Imaging. 2017; 10 (2): 171–184.

3.     Meier LM, Meineri ·M, Hiansen JQ, Horlick EM. Structural and congenital heart disease interventions: the role of three-dimensional printing. Neth Heart J. 2017; 25 (2): 65–75.

4.     Witschey WR, Pouch AM, McGarvey JR, Ikeuchi K, Contijoch F, Levack MM, Yushkevick PA, Sehgal CM, Jackson BM, Gorman RC, Gorman JH. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann. Thorac. Surg. 2014; 98 (2): 691–694.

5.     Vukicevic M, Puperi DS, Grande-Allen KJ, Little SH. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions. Ann. Biomed. Eng. 2017; 45 (2): 508–519.

6.     Parimi M, Buelter J, Thanugundla V, Condoor S, Parkar N, Danon S, King W. Feasibility and Validity of Printing 3D Heart Models from Rotational Angiography. Pediatr. Cardiol. 2018; 39 (4): 653–658.

7.     Abudayyeh I, Gordon B, Ansari MM, Jutzy K, Stoletniy L, Hilliard A. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples. J. Interv. Cardiol. 2018; 31 (3): 375–383.

8.     Ripley B, Levin D, Kelil T, Hermsen JL, Kim S, Maki JH, Wilson GJ. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses. J.of Magnetic Resonance Imaging. 2016; 45 (3): 1–11.

9.     Wang J, Coles-Black J, Matalanis G, Chuen J. Innovations in cardiac surgery: techniques and applications of 3D printing. J. 3D Print. Med. 2018; 2 (4): 179–186.

10.   Nagibovich OA, Svistov DV, Peleshok SA, Korovin AE, Gorodkov EV. Appliance of 3D printing technology in medicine. Klin. patofiz. 2017; 23 (3): 14–22 [In Russ].

11.   Bagaturiya GO. Prospects for the use of 3D printing in planning of surgical operations. Med.: teorija i praktika. 2016; 1 (1): 26–35 [In Russ].

12.   Kim GB, Lee S, Kim H, Yang DH, Kim Y-H, Kyung YS, Kim C-S, Choi SH, Kim BJ, Ha H, Kwon SU, Kim N. Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean J. of Radiol. 2016; 17): 182.

13.   Shi D, Liu K, Zhang X, Liao H, Chen X. Applications of three-dimensional printing technology in the cardiovascular field. Inter. and Emergency Med. 2015; 10: 769–780.

14.   Byrne N, Forte MV, Tandon A, Tandon A, Valverde I, Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient specific 3D printed models of the cardiovascular system. JRSM Cardiovasc. Disease. 2016; 5 (0): 1–9.

15.   Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Revista Espaсola de Cardiologнa (English Edition). 2017; 70 (4): 282–291.

16.   Karyakin NN, Shubnyakov II, Denisov AO, Kachko A V, Alyev RV, Gorbatov RO. Regulatory concerns about medical device manufacturing using 3D printing: current state of the issue. Travmatol. i ortop. Ross. 2018; 24 (4): 129–136 [In Russ].

 

Abstract:

Background: the optimal method for radiological diagnosis of prostate cancer (PCa) in planning multifocal biopsy is multiparametric magnetic resonance imaging (mpMRI)

Aim: was to improve the diagnosis of clinically significant PCa (csPCa) in patients with a negative primary biopsy, proceeding from mpMRI findings analysis based on results of the repeated procedure (24 cores) with targeted sampling of suspicious lesions.

Materials and methods: 732 patients were examined, 714 of them had been included in data of analysis. Prostatic mpMRI found suspicious foci with PI-RADS 3-5 in 396/714 (55.5%) patients. Results: The detection of PCa with a Gleason score of >7, PI-RADS 4 and 5 accounted for 65.9% and 80.0%, respectively Diagnostic sensitivity of mpMRI with a PI-RADS >4 in the diagnosis of PCa in patients with suspicious foci (n=396) was 83.6%, specificity - 84.9%; in the whole of 714 patients it was 46.4% and 86.7%, with a Gleason score of >7 - 75.3% and 89.3%, respectively In 73/290 (25.2%) patients with PI-RADS 3-5, PCa was detected in a systematic rather than in targeted biopsy, 17/73 (23.3%) of them having Gleason score >7. In 70/318 (22.0%) patients with PI-RADS 1-2, PCa was detected in systematic biopsy, in 11/70 (15.7%) cases Gleason score being >7.

Conclusion: mpMRI diagnostic accuracy for csPCa in patients with negative primary biopsy making it possible to refrain from repeated biopsy in males with PI-RADS 1-3; if repeated biopsy is necessary, the systematic one may be recommended.

 

References

1.      World Health Organization. International Agency for Research on Cancer. Cancer today. Available at: https://gco.iarc.fr/today/explore (accessed 31 July 2018).

2.      Okeanov AE, Moiseev PI, Levin LF. Statistics of oncologic diseases in the Republic of Belarus (2007-2016). Minsk. 2017: 286 [In Russ].

3.      Mottet N, Bellmunt J, Bolla M. et al. EAU-ESTRO-SIOG Guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2017; 71 (4): 618-629.

4.      Standardized indicators of oncoepidemiological situation 2016. Evraziyskiy onkologicheskiy zhurnal. 2018; 6(2). Avaiable at: http://cisoncology.org/files/stat_oncology_2016.pdf (accessed 31 July 2018) [In Russ].

5.      Parker C, Gillessen S, Heidenreich A, Horwich A. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. of Oncol. 2015; 26 (suppl. 5): v69-v77.

6.      NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) with NCCN Evidence Blocks™. Prostate Cancer. 2018; Ver. 3. Available at: https://www.nccn.org/evidenceblocks/ (accessed 31 July 2018).

7.      Karman AV, Leusik EA. Comprehensive diagnostics for prostate cancer patients with negative primary biopsy. Early findings of a prospective study. Onkologicheskiy zhurnal. 2013; 7 (4): 65-71 [In Russ].

8.      Karman AV, Leusik EA. Diagnostic potential of PI-RADS for patients with negative results of initial multifocal biopsy. Onkologicheskii zhurnal. 2014; 8 (2): 20-27 [In Russ].

9.      Futterer JJ, Briganti A, de Visschere P. et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur. Urol. 2015; 68 (6): 1045-1053.

10.    Karman AV, Krasny SA, Leusik EA. et al. Our experience in employing the second version of PI-RADS scale in prostate cancer diagnosis in patients with negative initial multifocal biopsy. Onkologicheskiy zhurnal. 2015; 9 (2): 63-69 [In Russ].

11.    Kasel-Seibert M, Lehmann T, Aschenbach R. et al. Assessment of PI-RADS v2 for the Detection of Prostate Cancer. Eur. J. Radiol. 2016; 85 (4): 726-731.

12.    Moldovan PC, van den Broeck T, Sylvester R. et al. What Is the Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in Excluding Prostate Cancer at Biopsy? A Systematic Review and Meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur. Urol. 2017; 72 (2): 250-266.

13.    Karman AV, Krasnyy SA, Shimanets SV. Targeted histology sampling from atypical small acinar proliferation area detected by repeat transrectal prostate biopsy. Onkourologiya. 2017; 3 (1): 91-100 [In Russ].

14.    Boesen L, Noergaard N, Chabanova E. et al. Early experience with multiparametric magnetic resonance imaging-targeted biopsies under visual transrectal ultrasound guidance in patients suspicious for prostate cancer undergoing repeated biopsy. Scand. J. Urol. 2015; 49 (1): 25-34.

15.    Junker D, Schwfer G, HeideggerI. et al. Multiparametric magnetic resonance imaging/transrectal ultrasound fusion targeted biopsy of the prostate: preliminary results of a prospective single-centre study. Urol. Int. 2015; 94 (3): 313-318.

16.    Prostate Imaging Reporting and Data System (PI-RADS). Available at: http://www.acr.org/Quality- Safety/Resources/PIRADS/ (accessed 31 July 2018).

17.    Bjurlin MA, Meng X, Le Nobin J. et al. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment. J. Urol. 2014; 192 (3): 648-658.

18.    Franiel T, Stephan C, Erbersdobler A. et al. Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding - multiparametric MR imaging for detection and biopsy planning. Radiology. 2011; 259 (1): 162-172.

19.    Karman AV, Leusik EA., Dudarev VS. Saturation transrectal biopsy in prostate cancer diagnosing in men with negative primary multifocal biopsy. Onkologicheskij zhurnal. 2014; 8 (31): 31-40 [In Russ].

20.    Simmons LAM., Kanthabalan A, Arya M. et al. The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br. J. Cancer. 2017; 116 (9): 1159-1165.

21.    Brown LC, Ahmed HU, Faria R. et al. Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health Technol. Assess. 2018; 22 (39): 1-176.

 

Abstract:

Background: leiomyosarcoma of veins is a rare group of sarcomas of mesenchymal origin, which develops from smooth muscle cells of vascular . Vascular leiomyosarcoma occurs in 2-5% and have a slow growth. It is rather difficult to diagnose this disease on the basis of only clinical symptoms, most often patients are worried about oedema and pain in lower limbs. To establish the diagnosis, it is necessary to use data of instrumental methods of examination, such as ultrasound, magnetic resonance imaging (MRI) and multispiral computed tomography (MSCT) with intravenous contrast enhancement, which allow to determine the tumor localization, prevalence, involvement of the vessel wall in the process, as well as to exclude distant metastases. The final diagnosis is made according to immunohistochemical studies.

Aim: was to study the importance of radiadiagnostics methods in case of such rare disease as leiomyosarcoma of the external iliac vein.

Material and methods: 67-year-old woman with complaints of oedema of the lower limb, was examined: an ultrasound study of inferior vena cava and veins of lower limbs, magnetic resonance imaging (MRI) and multispiral computed tomography (MSCT) with contrast enhancement, fine-needle aspiration biopsy Patient underwent operation: «removal of the pelvic retroperitoneal tumor with resection of the external iliac vein' segment and pelvic lymph node dissection.» Histological examination: leiomyosarcoma, G2 FNCLCC.

Results: control MSCT - data on the recurrence of the iliac vein tumor and metastatic lesion of organs of chest, abdominal and pelvic cavity were not obtained.

Conclusions: a complex of diagnostic methods allows you to properly diagnose. And among these methods, multiphase computed tomography is one of the best imaging method, which shows not only the localization of the tumor, but also helps in staging, excluding or confirming vein thrombosis, solving the issue of resectability of the tumor and identifying distant metastasis. 

 

References

1.      Le Minh T, Cazaban D, Michaud J. et al. Great saphenous vein leiomyosarcoma: a rare malignant tumor of the extremity-two case reports. Ann Vasc Surg. 2004; 18(2): 234-236.

2.      Yucel Yankol, Nesimi Mecit, Turan Kanmaz et al. Leiomyosarcoma of the retrohepatic vena cava: Report of a case treated with resection and reconstruction with polytetrafluoroethylene vascular graft. Ulus Cerrahi Derg 2015; 31: 162-165.

3.      Tripodi E, Zanfagnin V, Fava C. et al. Leiomyosarcoma of the Right Iliac Veins presenting as a pelvic mass: a case report. Obstet. Gynecol. cases Rev. 2015; 2 (3): 1-4.

4.      Mei Zhang, MDa, Feng Yan et al. Multimodal ultrasonographic assessment of leiomyosarcoma of the femoral vein in a patient misdiagnosed as having deep vein thrombosis: a case report. Medicine. 2017: 96(46): 1-5.

5.      Pavlov A.YU., Garmash S.V., Isaev T.K. i dr. Sovremennye predstavleniya o lejomiosarkomah ven zabryushinnogo prostranstva. Obzor klinicheskih sluchaev. [Modern ideas about leiomyosarcoma veins retroperitoneal space. Review of clinical cases.] Onkourologiya. 2016; 12(2): 92-96 [in Russ].

6.      Watanabe K, Tajino T, Sekiguchi M. et al. h-Caldesmon as a Specific Marker for Smooth Muscle Tumors. Am. J. Clin. Pathol. 2000; 113 (5): 663-668.

7.      Weiss SW, Goldblum JR. Enzinger and Weiss's Soft Soft Tissue Tumors. 6th ed. Philadelphia. 2014; 549-568.

8.      Gonzales-Cantu Ye.M., Tena-Suck M.L., Serna-Reyna S. et al. Leiomyosarcoma of vascular origin: case report. Case Rep. in Clinical Pathology. 2015; 2(4): 60-64

9.      Мацко Д.Е. Современные представления о морфологической классификации сарком мягких тканей и их практическое значение. Практическая онкология. 2013; 14 (2): 77-86.

10.    Чуканов Е., Никитина О., Марио Таха. Лейомиосаркома нижней полой вены. Променева дагностика, променева терапiя. 2014; 4: 69-72.

11.    Ahluwaliya A., Saggar K., Sandhu P. et al. Primary leiomyosarcoma of inferior vena cava: an unusual entity.. Indian Journal of Radiology and Imaging. 2002; 12(4): 515-516.

12.    Dzsinich C., Gloviczki P., Van Heerden J. A. et al. Primary venous leiomyosarcoma: a rare but lethal disease. Journal of Vascular Surger. 1992; 15(4): 595-603.

13.    Kaprin A.D., Galkin V.N., Zhavoronkov L.P., Ivanov V.K., Ivanov S.A., Romanko Yu.S. Synthesis of basic and applied research is the basis of obtaining high-quality findings and translating them into clinical practice. Radiation and risk. 2017; 26(2): 26-40.

 

Abstract:

A clinical case of right atrial diverticulum in a 34-year-old patient is presented, which was suspected during echocardiography and confirmed during magnetic resonance imaging of the heart. Main main features of the anomaly and clinical and radiation features of the atrial diverticulum are presented in discussion. 

 

References

1.      Podzolkov VP, Cheban V N, Kokshenev IV, Katsadze NG, Serov RA. Congenital giant aneurysm of the right atrium. Thoracic and cardiovasc. surg. 2012; 4: 44-47 [In Russ].

2.      Soroka NV, Shelestova IA, Kosmacheva ED, Porkhanov VA. Case report of a giant aneurysm of the right atrium in a patient of seventy-eight years. Pathology of blood circulation and cardiac surgery. 2014; 18(2): 66-68 [In Russ].

3.      Binder TM, Rosenhek R, Frank H.et al. Congenital malformations of the right atrium and the coronary sinus: an analysis based on 103 cases reported in the literature and two additional cases. Chest. 2000; 117(6): 1740-1748.

4.      Hofmann S.R., Heilmann A., Hдusler H. J., Dahnert I. et all Congenital idiopathic dilatation of the right atrium: antenatal appearance, postnatal management, long-term follow-up and possible pathomechanism. Fetal Diagn. Ther. 2012; 32: 256-261.

5.      Sanchez-Brotons J.A., Lуpez-Pardo F. J., Lуpez-Haldуn J. E., Rodmguez-Puras M. J. Giant Right Atrial Diverticulum: Utility of Contrast-enhanced Ultrasound. Rev. Esp. Cardiol. 2013; 6(03): 222-223.

 

 

 

Abstract:

Background: most accurate visualization of tumor, determination of stage and spread of tumor process is substantially significant for children who undergo treatment in accordance to protocols of the international SIOPEL group. According to SIOPEL criteria, patients with hepatoblastoma are stratified into risk groups based on diagnostic results. The allocation of patients into risk groups is based on the definition of the stage of the disease in the PRETEXT system (Pre-Treatment Extent of Disease - the spread of the tumor before treatment) and the level of alpha-fetoprotein (AFP)

Aim: was to present the main criteria of PRETEXT hepatoblastoma staging, based on results of magnetic resonance imaging (MRI).

Material and methods: study includes 74 patients with diagnosed hepatoblastoma aged 1 month to 14 years (median 3.1 years). All patients underwent MRI of the abdominal cavity before and after polychemotherapy (PCT) courses. MRI studies were performed on the scaner Magnetom Avanto (Siemens Healthcare) with a magnetic field strength of 1.5T

Results: hepatoblastoma staging was performed according to PRETEXT criteria. Stage I of the Pretext with lesion of one liver sector was revealed in 3 (4%) cases. Stage II of the Pretext - the presence of a tumor in two adjacent sectors was revealed in 26(35,1%) cases. Pretext III - the presence of a tumor in three adjacent sectors of the liver or in two non-adjacent liver sectors was identified in 23(31%) cases. Pretext IV - lesion of all liver sectors, was revealed in 22(29,7%) cases. Conclusions: MRI is a significantly informative method that allows to achieve data not only location, size, prevalence of the tumor process, but it also enables to give an accurate pre-operative stage evaluation using the PRETEXT system. Surgical removal of the tumor is the only way to achieve a complete cure, thus it is important to get an accurate image of the tumor, its anatomical location and determine the prevalence of the tumor process.

 

 

 

References  

1.      Men' T.H., Rykov M.Ju., Poljakov V.G. Zlokachestvennye novoobrazovanija u detej v Rossii: osnovnye pokazateli i tendencii. [Malignant neplasm in children in Russian Federation: tendensies and basic parameters]. Rossijskij onkologicheskijzhurnal. 2015;2:43-47 [ In Russ].

2.      Kaprin A.D., Starinskij V.V., Petrova G.V.. Zlokachestvennye novoobrazovanija v Rossii v 2015 godu (zabolevaemost' i smertnost') [Malignant neoplasms in Russian Federation in 2015 (morbidity and mortality)]. MNIOI im. P. A. Gercena. 2017; 250 s [In Russ]

3.      Hadzic N, Finegold MJ. Liver neoplasia in children. Clin Liver Dis. 2011; 15:443-462.

4.      Spector L.G., Birch J. The epidemiology of hepatoblastoma . Pediatr. Blood Cancer. 2012; 59(5):776-779.

5.      Tomlinson G.E., Kappler R. Genetics and epigenetics of hepatoblastoma. Pediatr Blood Cancer. 2012;59: 785-792

6.      Chung E.M., Lattin G.E. Jr, Cube R. et al. From the archives of the AFIP: pediatric liver masses: radiologic-pathologic correlation. Part 2. Malignant tumors. Radiographics. 2011;31:483-507.

7.      Meyers R.L. Tumors of the liver in children. Surgical Oncology. 2007;16:195-203.

8.      Jon Pritchard, Julia Brown, Elizabeth Shafford, Giorgio Perilongo, Penelope Brock, Claire Dicks-Mireaux, Jean Keeling, Angela Phillips, Anton Vos, Jack Plaschkes . Predictive Value of the Pretreatment Extent of Disease System in Hepatoblastoma: Results From the International Society of Pediatric Oncology Liver Tumor Study Group SIOPEL-1 Study. Journal of Clinical Oncology. 2005; 23(6):1245-52.

9.      Czauderna P. Hepatoblastoma throughout SIOPEL trials - clinical lessons learnt. Frontiers in Bioscience (Elite Ed). 2012; 4: 470-9.

10.    Roebuck D.J., Aronson D., Clapuyt Pet al.; International Childrhood Liver Tumor Strategy Group. 2005 PRETEXT: a revised staging system for primary malignant liver tumours of childhood developed by the SIOPEL group. PediatrRadiol. 2007; 37(2):123-32.

11.    Couinaud С. Liver anatomy: portal or biliary segmentation. Dig Surg. 1979; 16( 6):459-467.

12.    Couinaud C. The surgical anatomy of the liver revisited. Paris: Maugein&Cie, 1989:84-89. 96-101. 108-117.

13.    Kim Je. F., Filin A. V., Semenkov A. V. i dr. Hirurgija ochagovyh obrazovanij pecheni u detej: organosohranjajushhaja operacija ili transplantacija?[ Surgery of focal lesions of liver in children: organ-preserving intervention or transplantology?.] Klinicheskaja i jeksperimental'naja hirurgija. 2017;1:22-30. 

 

Abstract:

Recent decades exhibit a tendency to the rise of gynecological malignant tumors occurence, which makes a substantial contribution to women mortality rate. Wide application of surgery makes it crucial to specify the nature of a lesion, its location, and the degree of the neighboring tissue and lymphatic nodes involvement. Early recognition, accurate staging and localization, and timely recurrent tumor detection are the primary tasks of radiodiagnostics. Computed tomography and magnetic resonance imaging show good results in gynecological tumors detection.

Clinical application of new radiological methods develops the diagnostic accuracy, decreases the number of errors and improves the survival rate. The basic radiological diagnostic procedures and the possibilities of their clinical application are discussed in the article in a form of the survey of literature.

 

Reference

1.     Альбицкий В.Ю. и др. Репродуктивное здоровье и поведение женщин в России. Казань: Медицина. 2001; 25-27.

2.     Parker S.L. et al. Cancer statistics. Cancer. J. Clin.1996; 65: 5-27.

3.     Берека Дж. и др. Гинекология по Эмилю Новаку. Пер. с англ. М. 2002; 731-770.

4.     Карселадзе А.И. Морфология эпителиальныхяичников. Дис. д-ра мед. наук. М. 1989; 10-12.

5.     Хендлер Ф. Карцинома яичников. Пер. с англ.М. 2004; 1045-1067.

6.     Онкологическая гинекология. Тексты клинических лекций. М.: Изд-во Университетадружбы народов. 1985; 256.

7.     БолдогоеваИ.М. Совершенствование инструментальных методов в диагностике ракаяичников. Дис. кан. мед. наук. Уфа. 2007.

8.     Жорданиа К.И. Некоторые аспекты диагностики и лечения рака яичников. Русскиймедицинский журнал. 2003; 5: 7-8.

9.     Озолиня Л.А. и др. Цитостатики при ракеяичников и решение проблемы безопасности их применения для медицинского персонала. Русский врач. 2004; 3: 5-6.

10.   Bourne Т.Н., Reynolds K., Campbell S.Ovarian cancer screening. Curr. Opin. Radiol.1991; 3 (2): 216-224.

11.   Урманчеева А. Ф., Кутушева Г. Ф. Диагностика и лечение опухолей яичника. Монография. М. 2003.

12.   Edelman R. et al. Clinical MagneticResonance Imaging. Philadelphia: W.B.Saunders. 2006; 3: 2974-3002.

13.   Урманчеева А.Ф., Мешкова И.Е. Вопросыэпидемиологии и диагностики рака яичников. Практическая онкология. 2000; 4: 8-20.

14.   Reznek Rodney et al. Cancer of the Ovary.Cambridge university press. 2007-2177.

15.   BerekJ.S., Hacker N.F. Ovarian and fallopiantubes. In: C.M. Haskell (ed.). CancerTreatment (4th ed.). Philadelphia: W. B.Saunders. 1995.

16.   Hamm B., Ferstner R. MRI and CT of thefemele pelvis. Germany: Springer. 2007; 50-75.

17.   Sohaib S. A., Sahdev A., Van Trappen P. O. etal. Characterization of adnexal mass lesionson MR imaging. Am. J. Roentgenol. 2003; 180:1297-1304.

18.   Kurjak A. et al. Transvaginal ultrasound colorflow and Doppler waveform of the post-menopausal adnexal mass. Obstet. Gynecol.1992;80: 917-921.

19.   Brown D.L., Frates M.C., Laing F.C. et al. Ovarian masses: can benign and malignant lesions be differentiated with color and pulsed Doppler US? Radiology. 1994; 190: 330-336.

20.   Демидов В.И. и др. Пограничные опухоли,рак и редкие опухоли яичников. М. 2005;5-106.

21.   Marret H., Sauget S., Giraudeau B. et al.Contrast-enhanced sonography helps in discrimination of benign from malignant adnexal masses. J. Ultrasound. Med. 2004; 23:1629-1639.

22.   Hillaby K. et al. The value of detection ofnormal ovarian tissue (the «ovarian crescentsign») in the differential diagnosis of adnexalmasses. Ultrasound. Obstet. Gynecol. 2004; 23:63-67.

23.   Guerriero S., Alcazar J.L., Ajossa S. et al.Comparison of conventional colour Dopplerimaging and power Doppler imaging for thediagnosis of ovarian cancer: results of aEuropean study. Gynecol. Oncol. 2001; 83:299-304.

24.   Low R.N., Carter W.D., Saleh E et al. Ovariancancer: comparison of findings with perfluorocarbon-enhanced MR imaging, In-111-CYT-103 immunoscintigraphy and CT. Radiology.1995; 195: 391-400.

25.   Williams S.D. Germ cell tumors. In: R.F. Ozols(ed.), Ovarian Cancer. Philadelphia: W.B.Saunders. 1992; 967-974.

26.   Thurnher S., Hodler J., Baer S. et al.Gadolinium-DOTA enhanced MR imaging ofadnexal tumors. J. Comput. Assist. Tomogr. 1990;14: 939-949.

27.   Rohren E.M., Turkington T.G., Coleman R.E.Clinical applications of PET in oncology.Radiology. 2004; 231: 305-332.

28.   Therasse S. G. et al. New guidelines to evaluate the response to treatment in solid tumors.European Organization for Research andTreatment of Cancer, National CancerInstitute of the United States, NationalCancer Institute of Canada. J. Natl. Cancer.Inst. 2000; 92: 205-216.

29.   Avril А., Sassen S., Schmalfeldt B. et al.Prediction of response to neoadjuvantchemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer.J. Clin. Oncol. 2005; 23: 7445-7453.

30.   Willemse P.H. et al. Interaperitoneal humanrecombinant interferon alfa-2b in minimal residual ovarian cancer. Eur. J. Cancer. 1990; 26: 353-358.

31.   Yamashita Y., Torashima M., Hatanaka Y. et al.Adnexal masses: accuracy of characterizationwith transvaginal US and precontrast andpostcontrast MR imaging. Radiology. 1995;194: 557-565.

32.   Forstner R., Hricak H., Powell C.B. et al.Ovarian cancer recurrence: value of MRimaging. Radiology. 1995; 196: 715-720.

33.   Komatsu T. et al. Adnexal masses: transvaginalUS and gadolinium-enhanced MR imaging assessment of intratumoral structure. Radiology. 1996; 198: 109-115.

34.   Low R.N., Saleh F., Song S.Y. et al. Treatedovarian cancer: comparison of MR imagingwith serum CA-125 level and physical examination - a longitudinal study. Radiology. 1999;211:519-528.

35.   Prayer L., Kainz C., Kramer J. et al. CT andMR accuracy in the detection of tumorrecurrence in patients treated for ovariancancer. J. Comput. Assist. Tomogr. 1993; 17:626-632.

 

Abstract:

Accurate and timely diagnosis of benign renal tumors is often complicated, mainly because of the large variety of manifestations. 102 patients with various renal tumors were included in the study; in 9 of them (8.8%) tumors were verified as benign. Specimen were obtained by surgical tumor excision (8 cases), and ultrasound guided needle biopsy (1 case). The importance of pre-operative CT and MRI is shown for accurate diagnosis of benign renal tumors, in particular, angiomolipoma and multilocular cystous nephroma. Authors also discussed complicacies in radiodiagnostics of benign renal tumors.

 

Reference

1.     BenningtonJ.L., BeckwithJ.B. Tumors of thekidney, renal pelvis, and ureter. In: Atlas of 9.tumor pathology. Washington. Armed ForcesInstitute of Pathology. 1975; 12: 215.

2.     Xippel W.D. The incidence of benign renalnodules (a clinicopathological study).J. Urol. 10.1971; 106: 503.

3.     Harmon W.J., King B.F., Lieber M.M.Renal oncocytoma: magnetic resonance 11.imaging characteristics. J Urol. 1996; 155 (3):863-867.

4.     Kettritz U., Semelka R.C., Siegelman E.S.,Shoenut J.P., Mitchell D.G. Multilocular cysts 12.nephroma MR imaging appearance with current techniques including gadolini. J. Magn.Reson. Imaging. 1996; 6 (1): 145-148.

5.     Semelka R.C. Abdominal - Pelvis MRI. New- 13.York. Wiley-Liss. 2002; 379-469.

6.     Wegener O.H. Whole Body ComputedTomography. Boston. Blackwell ScientificPublication. 1994; 369-400.

7.     Michalko T., Zelenak P., Valansky L. et al.Renal oncocytoma and its morphology, diagnosis and therapy. Bratisl. Lek. Listy. 1994; 95 (6): 267-269.

8.     Muramoto M., Uchida T., Kyuuno H., IshidaH., Utsunomiya T., Egawa S., Mashimo S.,Koshiba K. et al. A case of renal oncocytoma. Hinyokika Kiyo. 1994; 40 (1): 47-50.

9.     Perez-Ordonez В., Hamed G., Campbell S. Renal oncocytoma: a clinicopathologic study of 70 cases. Am. J. Surg. Pathol. 1997; 21 (8): 871-883.

10.   Saucher-Chapado M., Angulocuesta J. et al. Sunhronous bilateral renal oncocytoma. Arch. Esp. Urol. 1995; 48 (9): 909-913.

11.   Davidson A.J., Hayews W.S., Hartman D.S. et al. Renal oncocytoma and carcinoma. Failure of differentiation with CT. Radiology. 1993; 186, 693-696.

12.   Ball D.S., Friedman A.C., Hartman D.S. et al. Scar sign of renal oncocytoma. Magnetic resonance imaging appearance and lack of specificity. Urol. Radiol. 1986; 8: 46-48.

13.   Sakai Y., Gotoh S., Suzuki S., Ozawa T. A case of unilateral and synchronous occurrence of oncocytoma and renal cell carcinoma. Hinyokika Kiyo. 1997, 43 (9): 651-653.

14.   Sasakis Т., Hayashi T., Tsugaya M., Okamura T, Sakakura T, Kohri K. Radiological diagnosis of renal oncocytoma. Hinyokakiyo. 1995; 41 (9): 731-735.

15.   Wang Y.T., Liu K.L., Chuch S.C., Tsang Y.M. Giant renal oncocytoma: differential diagnosis.J. Formos. Med. Assoc. 2003; 102 (1): 46-48.

 

Abstract:

Purpose. For basic, purpose was to develop effective methods of exact diagnostics of an acute pancreatitis (AP), to work out classifications of disease, an establishment of patients' condition definitions, and also productive supervision over dynamics of its process by means of application computed tomography (СТ) and magnetic resonance imaging (MRI). Besides, on the base of obtained data, the optimum tactics of treatment was worked out

Materials and methods. More than 500 patients with AP were underwent CT and MRI with one-stage contrast agents' injection. During the research we have applied different variations of scanning modes and parameters. Results were analyzed in connection with supervision on patients conditions. Treatment tactics depended on obtained data

Results. We have worked out effective methods of AP diagnostics, optimal parameters of research in different clinical currents and we have developed an effective tactics of treatment in patients with severe AP Besides, on the base of obtained data, the optimum tactics of treatment was worked out

Conclusions. CT with intravenous contrasting is the best method of diagnostics or supervision in dynamics, which allows to work out the most productive treatment tactics. Using CT in combination with MRI in some cases can be specifying method of diagnostics.  

 

References

1.    Араблинский А.В., Черняков P.M., Хитрова А.Н., Богданова Е.Г. Лучевая диагностика острого панкреатита. Медицинская визуализация. 2000;         1-14.

2.    Прокоп М., Галански М. Спиральная компьютерная томография. 2009.

3.    Райан С., МакНиколас М., Юстеис С. Анатомия человека при лучевых исследованиях. 2009.

4.    Шабунин А.В., Мумладзе Р.Б., Чеченин Г.М., Тавобилов М.М. Этапное хирургическое лечение острого панкреатита, панкреонекроза алкогольной этиологии. Неотложная и специализированная хирургическая помощь. 1-й конгресс московских хирургов. Тез. док. М. 19-21 мая 2005 г. М.: ГЕОС. 2005; 122.

5.    Balthazar E. CT diagnosis and staging of acute pancreatitis. RadiolClin. North. Am. 1989; 27 (1): 19-37.

6.    Balthazar E.J., Megibov A.J., Pozzi R. Mucelli Imaging of the pancreas. Medical radiology.2009.

7.    Piironen A. et al. Detection of severe acute pancreatitis by contrast enhanced magnetic resonance imaging. European Radiology. 2000; 2: 354.

8.    Balthazar E. et al. Acute pancreatitis: value of CT in establishing prognosis. Radiology. 1990; 174 (2): 331-336.

9.    Bradley E.L. A clinically based classification system for acute pancreatitis. Summary of the international simposium on acute pancreatitis. Atlanta. G., Sept. 11-13. 1992: 586-590.

10.  Багненко С.Ф., Рухляда Н.В., Толстой А.Д., Гольцов В.Р. Лечение острого панкреатита на ранней стадии заболевания. НИИ СП им. И.И. Джанелидзе, С.-Пб. 2002; 24.

11.  Robinson PJ.A., Sheridan M.B. Pancreatitis computed tomography and magnetic resonance imaging. European Radiology. 2000; 3: 401.

12.  Balthazar E.J., Freeny P.C., Sonennberg E. Imaging intervention in acute pancreatitis. Radiology. 1994; 193: 197-306.

13.  Balthazar E.J. et al. Acute pancreatitis. Prognostic value of CT. Radiology. 1985; 156:767-772.

14.  Isenmann R., Rau B., Beger H.G. Infected necroses and pancreatic abscess. Surgical therapy. Kongressbd Dtsch Ges Chir Kongr. 2001; 118: 282-284.

15.  Кармазановский Г.Г., Федоров В.Д. Компьютерная томография поджелудочной

Diagnostic errors in MRI of knee joint: multicentre analysis



DOI: https://doi.org/10.25512/DIR.2009.03.4.02

For quoting:
Morozov S.P., Ternovoy S.K., Nasnikova I.Yu., Korolev A.V., Filistaev P.A., Il'in D.O. "Diagnostic errors in MRI of knee joint: multicentre analysis". Journal Diagnostic & interventional radiology. 2009; 3(4); 9-16.

 

Abstract:

Joint trauma is one of the major causes of the temporary disability in economically and socially active groups of population. Definitive preoperative diagnosis allows correct surgery planning, decrease sick-lists duiauon and niipiove quality of patients' life. MRI is the method of chice for pre-operative examination of the knee joint. However it is associated with high variability of diagnostic effectiveness. In this paper we focus on principal diagnostic errors of the technique and provide recommendations for the appropriate application of MRI on the basis of mul-ticentre experience.

 

References 

 

1.     Миронов С.П., Орлецкий А.К., Цыкунов М.Б Повреждения связок коленного сустава, М. 1999; 207.

 

 

 

 

2.    Миронова З.С., Фалех Ф.Ю. Артроскопия и артрография коленного сустава. М.: Медицина. 1982; 111.

 

 

 

 

3.    Сайт Американской академии хирургов-ортопедов - www.aaos.org

 

 

 

 

4.    Kocabey Y. al. The value of clinical examination versus magnetic resonance imaging in the diagnosis of meniscet tears and anterior cruciate ligament rupture. Arthroscopy. 2004; 20 (7): 696-700.

 

 

 

 

5.    Vincken P.W. еt al. Effectiveness of MR imaging in selection of patients for arthroscopy of the knee. Radiology. 2002; 223 (3): 739-746.

 

 

 

 

6.    Терновой С.К., Синицын В.Е. Развитие компьютерной томографии и лучевой диагностики. Тер. архив. 2006; 1: 10-12.

 

 

 

 

7.    Krampla W. еt al. MRI of the knee: how do field strength and radiologist's experience influence diagnostic accuracy and interobser-ver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament? Eur. Radiol. 2009; 19 (6): 1519-1528.

 

 

 

 

8.    Magee T., Shapiro M., Williams D. MR accuracy and arthroscopic incidence of meniscal radial tears. Skeletal. Radiol. 2002; 31 (12): 686-689.

 

 

 

9.    De Smet A.A., Graf B.K. Meniscal tears missed on MR imaging: relationship to meniscal tear patterns and anterior cruciate ligament tears. Am. J. Roentgenol. 1994; 162 (4): 905-911.

 

Abstract:

Aim. The purpose of the study was to improve the MRI visualization of cranial nerves (CN) in normal state and in different pathological conditions. Tasks. Our tasks were to develop MRI protocols for CN visualization, describe MRI anatomical features of CN, and MRI symptoms of different CN involvement

Materials and methods. High field MRI was done in 252 patients, with 498 high quality images of CN. There were 202 patients with CN pathology, and 50 volunteers without CN involvement symptoms. Imaging was performed with «Signa Infinity» 1,5 Tl (General Electric). MRI protocol included 2 stages: basic for brain imaging, and special for CN visualization.

Results. The majority of the patients (112) had trigeminal nerve involvement, 51 - vestibulocochlear nerve, 16 - facial nerve, 9 - optic nerve, 5 - trochlear nerve, 4 - caudal CN involvement, 3 - olfactory nerve, 1 - oculomotor nerve, and 1 patients with abducent nerve disfunction. The etiology was vascular in 133 cases, tumorous in 45, demyelinating in 14, inflammatory and infection in 7, and congenital anomalies in 2 patients.

Conclusions. MRI is suitable for CN anatomical visualization and differentiation; the method is able to identify the level of CN involvement and surrounding tissues reaction. MRI protocol should include two steps - basic and special, the latter depending on the particular CN involvement.
 

 

References 

 

1.    Casselman J.W. The upper and lower cranial nerves. Erasmus course on magnetic resonance imaging. Syllabus. Vi-enna, Austria. 2006; 13: 123.

 

 

 

 

2.    Burchiel K.J., Slavin K.V. On the natural history of trigeminal neuralgia. Neurosurg. 2000; 46(1): 152-158.

 

 

 

 

3.    Casselman J.W. The upper and lower cranial nerves. Erasmus course on magnetic resonance imaging. Syllabus. Vi-enna, Austria. 2006; 13-17.

 

 

 

4.    Caillet H., Delvalle A., Doyon D. Visibility of cranial nerves at MRI. J. Neuroradiol. 1990; 17: 289-301.

 

 

Abstract:

Aim: was to evaluate the use of intraoperative ultrasound in examination of patients with liver cancer compared with preoperative diagnostic methods.

Materials and methods: the study involved 650 patients who received surgical treatment for the period 1998-2013 years. During surgical intervention, all patients underwent intraoperative ultrasonography (IOUS) of the liver.

Results: results of preoperative examination methods were compared with intraoperative data, IOUS and histological examination. Sensitivity and accuracy of IOUS is above all methods of preoperative diagnosis, surgical palpation and is 99.7% and 94.9%, respectively Analyzed causes of mistakes of preoperative methods. These related: long time interval before surgical intervention, diameter of formations less then 2 cm, chemotherapy, presence of concomitant cirrhosis, different location of lesions (subcapsular, on the capsular and on the diaphragm of the liver), benign or non-tumorous liver lesions. Changes of operation volume occurred in 38 % cases, 20 % of them - on the base IOUS data.

Conclusions: IOUS provides decisive diagnostic information for the surgeon during the operation which may lead to changes of operation volume, and thus affect outcomes of the disease. Contrast resolution IOUS is actual when oncological operations on the liver are made. Ultrasound professionals should be master of IOUS techniques due to the increasing necessity of its use in clinics dealing with oncological surgery of the liver. 

 

References

1.     Machi J., Oishi A.J., Furumoto N.L., Oishi R.H. Intraoperative ultrasound. Surg. Clin. North. Am. 2004; 84:1085-1111.

2.     Torzilli G., Makuuchi M. Intraoperative ultrasonography in liver cancer. Surg. Onco.l Clin.N Am. 2003; 12: 91-103.

3.     Komarov I.G., Komov D.V., Metastazy zlokachestvennyh opuholej bez vyjavlennogo pervichnogo ochaga. [Metastases of malignant tumors without identified primary lesion.]. M, «Triada H», 2002, 63-105 [InRuss].

4.     Kruskal J.B., Kane R.A. Intraoperative  US of the liver: techniques and clinical applications. Radiographics. 2006 Jul-Aug; 26(4):1067-84. 

5.     Silas A.M., Kruskal J.B., Kane R.A. Intraoperative ultrasound. Radiol. Clin. North. Am. 2001; 39:429-448.

6.     Lordan J.T., KaranjiaN.D. ‘Close shave’in liver resection for colorectal liver metastases. Eur. J. Surg. Oncol. 2010; 36:47-51.

7.     Tinkle C.L., Haas-Kogan D. Hepatocellular carcinoma: natural history, current management, and emerging tools. Biologics. 2012; 6:207-19.

8.     Xu L.H., Cai S.J., Cai G.X., Peng W.J. Imaging diagnosis of colorectal liver metastases. World J. Gastroenterol. 2011; 17(42):4654-9.

9.     Schmidt J., Strotzer M., Fraunhofer S. et al. Intraoperative ultrasonography versus helical computed tomography and computed tomography with arterioportography in diagnosing colorectal liver metastases: lesion-by-lesion analysis. World J. Surg. 2000; 24:43-47.

10.   Kulig J., Popiela T., Ktek S., et al. Intraoperative ultrasonography in detecting. Scand. J. Surg. 2007; 96: 51-5.

11.   Hata S., Imamura H., Aoki T., et al. Value of visual inspection, bimanual palpation, and intraoperative ultrasonography during hepatic resection for liver metastases of colorectal carcinoma. World J. Surg. 2011 Dec; 35(12):2779-87.

12.   Patel N.A., Roh M.S. Utility of intraoperative liver ultrasound. Surg.Clin. North Am. 2004 Apr; 84(2):513-24.

13.   Kaczmarek B., Petka B., Ostrowski M. Usefulness of intraoperative ultrasonography of the liver in patients with colorectal adenocarcinoma. Pol. Merkur. Lekarski. 2003 Mar; 14(81):229-32.

14.   Spiliotis J., Rouanet P., Deschamps F., et al. Accuracy of intraoperative ultrasonography in diagnosing liver metastasis from colorectal cancer: evaluation with postoperative follow-up results. World J. Surg. 1992 May-Jun; 16(3):545-6.

15.   Piccolboni D., Ciccone F., Settembre A., Corcione F. Liver resection with intraoperative and laparoscopic ultrasound: report of 32 cases. Surg. Endosc. 2008; 22:1421-1426.

16.   Lordan J.T., Stenson K.M., Karanjia N.D. The value of intraoperative ultrasound and preoperative imaging, individually and in combination, in liver resection for metastatic colorectal cancer. Ann. R. Coll. Surg. Engl. 2011 Apr; 93(3):246-9.

17.   Yang S., Hongjinda S., Hanna S.S. et al. Utility of preoperative imaging in evaluating colorectal liver metastases declines over time. HPB (Oxford). 2010 Nov; 12(9):605-9.

18.   Lin L.W., Ye Z., Xue E.S., et al. Intraoperative ultrasonography in hepatobiliary surgery. Hepatobiliary Pancreat Dis Int. 2002; 1:425-8.

19.   Van Vledder M.G., Pawlik T.M., Munireddy S. et al. Factors determining the sensitivity of intraoperative ultrasonography in detecting colorectal liver metastases in the modern era. Ann. Surg. Oncol. 2010 Oct; 17(10):2756-63.

20.   Stone M.D., Kane R., Bothe A. Jr., et al. Intraoperative ultrasound imaging of the liver at the time of colorectal cancer resection. Arch. Surg. 1994; 129:431-435.

21.   Sahani D.V., Kalva S.P., Tanabe K.K. et al. Intraoperative US in patients undergoing surgery for liver neoplasms: comparison with MR imaging. Radiology. 2004 Sep; 232(3):810-4.

22.   Bloed W., van Leeuwen M.S., Borel Rinkes IH. Role of intraoperative ultrasound of the liver with improved preoperative hepatic imaging. Eur. J. Surg. 2000; 166:691-695.

23.   D'Hondt M., Vandenbroucke-Menu F., Preville- Ratelle S. et al. Is intra-operative ultrasound still useful for the detection of a hepatic tumour in the era of modern preoperative imaging? HPB (Oxford). 2011 Sep; 13(9):665-9.

24.   Kruskal J.B., Kane R.A. Intraoperative  US of the liver: techniques and clinical applications. Radiographics. 2006 Jul-Aug; 26(4):1067-84.

25.   Cabula C., Nicolosi A., Calo P.G., et al. Intraoperative ultrasonography in the diagnosis of liver metastasis from gastrointestinal neoplasms. Minerva Chir. 1993; 48:1189-92.

26.   Boutkan H., Luth W. Meyer S., et al. The impact of intraoperative ultrasonography of the liver on the surgical strategy of patients with gastrointestinal malignancies and hepatic metastases. Eur. J. Surg. Oncol. 1992; 18: 342-346.

27.   Clarke M.P., Kane R.A., Steele G. Jr., et al. Prospective comparison of preoperative imaging and intraoperative ultrasonography in the detection of liver tumors. Surgery. 1989 Nov; 106(5):849-55.

28.   Kruszewski W.J., Walczak J., Szajewski M., et al., The value of intraoperative liver ultrasound assessment using an intraabdominal probe during laparotomy performed for oncological reasons. Pol. Przegl. Chir. 2013 Feb 1; 85(2):78-82.

29.   Liu L., Miao R., Yang H., et al. Prognostic factors after liver resection for hepatocellular carcinoma: a single-center experience from China. Am. J. Surg. 2012, 203:741-750. 

30.   Liska V., Treska V., Holubec L., et al. Recurrence of colorectal liver metastases after surgical treatment: multifactorial study. Hepatogastroenterology. 2007 Sep; 54(78):1741-4.

31.   Tao L.Y, He X.D., Qu Q., et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a case-control study in China. Liver Int. 2010; 30: 215-221.

32.   Kane R.A., Hughes L.A., Cua E.J., et al. The impact of intraoperative ultrasonography on surgery for liver neoplasms. J. Ultrasound Med. 1994; 13:1-6. 

33.   Solomon M.J., Stephen M.S., Gallinger S., White G.H. Does intraoperative hepatic ultrasonography change surgical decision making during liver resection? Am. J. Surg. 1994; 168:307-310.

34.   Cervone A., Sardi A., Conaway G.L. Intraoperative ultrasound (IOUS) is essential in the management of metastatic colorectal liver lesions. Am. Surg. 2000; 66:611-615.

35.   Conlon R., Jacobs M., Dasgupta D., Lodge J.P. The value of intraoperative ultrasound during hepatic resection compared with improved preoperative magnetic resonance imaging. Eur. J. Ultrasound. 2003; 16:211-216.

36.   Zacherl J., Scheuba C., Imhof M., et al. Current value of intraoperative sonography during surgery for hepatic neoplasms. World J.Surg. 2002; 26:550-554.

37.   Luck A.J., Maddern G.J. Intraoperative abdominal ultrasonography. Br. J. Surg. 1999 Jan; 86(1):5-16.

38.   Paul M.A., Mulder L.S., Cuesta M.A. et al. Impact of intraoperative ultrasonography on treatment strategy for colorectal cancer. Br. J. Surg. 1994; 81:1660-1663.

39.   Leen E., Angerson W.J., O’Gorman P., et al. Intraoperative ultrasound in colorectal cancer patients undergoing apparently curative surgery: correlation with two year follow-up. Clin. Radiol. 1996; 51:157-159.

40.   Stone M.D., Kane R., Bothe A. Jr., et al. Intraoperative ultrasound imaging of the liver at the time of colorectal cancer resection. Arch. Surg. 1994; 129:431-435.

 

 

Abstract:

The aim of the study was to demonstrate possibilities of magnetic resonance imaging (MRI) with contrast enhancement and calculation of «index of contrast agent accumulation» in diagnostics of prostate cancer. Accumulation of contrast agent in malignant and benign tissues were analyzed in comparison and in details. Efficiency of provided method of diagnosis and definition of pathologic process localization is proved.

 

Reference

1.     Franiel Т., Stephan C., Erbersdobler A., Dietz E. Maxeiner A. et al. Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding-multiparametric MR imaging for detection and biopsy planning. Radiology. 2011; 259:162-172.

2.     Kitajima K., Kaji Y, Fukabori Y, Yoshida K., Suganuma N. et al. Prostate cancer detection with 3T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J. Magn. Reson. Imaging. 2010; 31: 625-631.

3.     Futterer J.J., Heijmink S.W., Scheenen T.W., Veltman J., Huisman H.J. et al. Prostate cancer localization with dynamic contrastenhanced MR imaging and proton MR spectroscopic imaging. Radiology. 2006; 241:449-458.

4.     Tanimoto A., Nakashima J., Kohno H., Shinmoto H., Kuribayashi S. Prostate cancer screening: the clinical value of diffusionweighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J. Magn. Reson. Imaging. 2007; 25:146-152.

5.     EL-Gabry E.A., Halpern E.J., Strup S.E., et al. Imaging prostate cancer; current and future applications. Oncology Huntingt. 2001; 15: 325-336.

6.     Engelbrecht MR, Huisman HJ, Laheij R.J. MR imaging Radiology 2003; 229: 248-254.

7.     Hara N., Okuizumi M. Koike H., Kawaguchi M., Bilim V. Dynamic contrast-enhanced magnetic resonance imaging (DCEMRI) is a useful modality for the precise detection and staging of early prostate cancer. Eur. Radiol. 2012; 22: 746-757.

8.     Nicholson B., Schaefer G., Theodorescu D. Angiogenesis in prostate cancer: biology and therapeutic opportunities. Cancer Metastasis Rev. 2001; 20: 297-319.

9.     Beyersdorff D., Taupitz M., Winkelmann B. et al. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology. 2002; 224: 701-706.

10.   Pasquier D., Hugentobler A., Masson P Which imaging methods should be used before salvage radiotherapy after prostatectomy for prostate cancer? Eur. Radiol. 2012; 22: 746-757.

11.   Cirillo S., Petracchini M., Scotti L. et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur. Radiol. 2009; 19: 761-769

12.     ESUR prostate MR guidelines 2012 Jelle O. Barentsz & Jonathan Richenberg & Richard Clements & Peter Choyke & Sadhna Verma & Geert Villeirs & Olivier Rouviere & Vibeke Logager & Jurgen J. F^tere^ Engelbrecht M.R., Huisman H.J., Laheij R.J., et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast enhanced MR imaging. Radiology. 2003; 229: 248-254 

 

Abstract:

Malignant otitis externa is a rare but potentially fatal disease, that occurs mostly among elderly diabetic or immunocompromised patients.

Aim: was is to report the experience of the diagnosis of malignant otitis externa.

Materials and methods: we examined 5 patients with diagnosed malignant otitis externa with the help of computed tomography (CT) and magnetic resonance imaging (MRI). In both diagnostic methods, contrast enhancement was used.

Results: causative pathogen is mainly Pseudomonas Aeruginosa. The disease spreads rapidly to skull base region, inducting osteomyelitis and involving the cranial nerves. The diagnosis is based on the radiology methods, anamnesis, and biopsy

Conclusions: CT is a first-line method, which allows to detect the presence of bone erosion, which is critical for the diagnosis. Exact borders of a pathological infiltration, distribution on cranial nerves, brain covers and in a skull were defined on MRI. 

 

References

1.     Rosenfeld R.M., Brown L., Cannon C.R., et al. Clinical practice guideline: acute otitis externa. Otolaryngol. Head Neck Surg. 2006; 134 (4): 4-23.

2.     Sander R. Otitis externa: a practical guide to treatment and prevention. Am Fam. Physician. 2001; 1;63(5): 927-36.

3.     Franco-Vidal V., Blanchet H., Bebear C., et al. Necrotizing external otitis: a report of 46 cases. Otol Neurotol. 2007; 28:771-3.

4.     Meltzer P.E., Kelemen G. Pyocutaneous osteomyelitis of the temporal bone, mandible, and zygoma. Laryngoscope. 1959; 169: 1300-16.

5.     Chandler J.R. Malignant external otitis. Laryngoscope. 1968; 78: 1257-94.

6.     Nadol J.B. Jr. Histopathology of pseudomonas osteomyelitis of the temporal bone starting as malignant external otitis. Am J Otolaryngol 1980; 1: 359-71.

7.     Matthew J. Carfrae, MD, Bradley W. et al. Malignant Otitis Externa. Otolaryngol Clin N Am. 2008; 41: 537-549.

8.     Rubin Grandis J., Branstetter B.F. 4th, Yu V.L. The changing face of malignant (necrotising) external otitis: clinical, radiological, and anatomic correlations. Lancet Infect Dis. 2004; 4: 34-9.

9.     Castro R., Robinson N., Klein J., et al. Malignant external otitis and mastoiditis associated with an IgG4 subclass deficiency in a child. Del Med J. 1990; 62: 1417-21.

10.   Holder C.D., Gurucharri M., Bartels L.J., et al. Malignant external otitis with optic neuritis. Laryngoscope. 1986; 96: 1021-3.

11.   Slattery W.H., Brackmann D.E. Skull base osteomyelitis: malignant otitis externa. Otolaryngol Clin North Am. 1996; 29: 795-806.

12.   Singh A., Al Khabori M., Hyder M.J. Skull base osteomyelitis: diagnostic and therapeutic challenges in atypical presentation. Otolaryngol Head Neck Surg. 2005; 133: 121-5.

13.   Bovo R., Benatti A., Ciorba A., et al. Pseudomonas and Aspergillus interaction in malignant external otitis: risk of treatment failure. Acta Otorhinolaryngol Ital. 2012; 32(6): 416-419.

14.   Meyers B.R., Mendelson M.H., Parisier S.C., et al. Malignant external otitis. comparison of monotherapy vs combination therapy. Arch Otolaryngol Head Neck Surg. 1987; 113: 974-8.

15.   Kwon B.J., Han M.H., Oh S.H., et al. MRI findings and spreading patterns of necrotizing external otitis: is a poor outcome predictable? Clin Radiol.2006; 61: 495-504.

16.   Grandis J.R., Curtin H.D., Yu V.L. Necrotizing (malignant) external otitis: prospective comparison of CT and MR imaging in diagnosis and follow-up. Radiology. 1995; 196: 499-504.

17.   Strashun A.M., Nejatheim M., Goldsmith SJ. Malignant external otitis: early scintigraphic detection. Radiology. 1984; 150: 541-5. 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы